Lines, Angles, and Triangles

Use the figure for 1–2.

- 1. Name all angles congruent to $\angle 1$.
- 2. Name all angles supplementary to $\angle 3$.
- 3. Write an equation for the line that passes through (2, -5) and is parallel to 3x + 4y = 8.
- 4. For the triangles shown, state the additional congruency statement needed to prove $V\!BCD\cong V\!QRS$ for the given theorem.

- a. SAS Theorem
- b. ASA Theorem

Lines, Angles, and Triangles

5. Write an equation for the line that passes through (10, 0) and is perpendicular to 3x - y = 7.

6. What is the sum of the interior angles of this polygon?

8. If $m \angle 1 = 53^{\circ}$, what is $m \angle 3$?

Characteristics of Functions

1. What is the domain of the relation shown on the graph?

2. Graph the solutions for $20 \ge 4(1-x)$ on the number line. $-8 - 6 - 4 - 2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8$

Refer to the graph below for 3-4.

- 3. Write the domain and range of the function in interval notation.
- 4. Describe the end behavior of the function.
- 5. Solve $-12 \le -2|x+5|$.

6. Find the inverse of
$$f(x) = \frac{4x+7}{12}$$
.

Characteristics of Functions

Refer to the figure below for 7–8.

9. Identify the intervals where the graph is decreasing.

А	(−∞, −2)	Yes	No
В	(-4, 0)	Yes	No
С	(-2, 1)	Yes	No
D	$(1, +\infty)$	Yes	No

- 10. What is the rate of change on the interval $(1, +\infty)$?
- 11. Graph the solutions to -3|x+1|+2=-4.

				y			
			4 -		_		
			2 -				
_							X
	_4	-2	0		2	4	_
			-2 -				1
			_4 -				
			1				-

Polynomial Operations

1. Choose Yes or No. Can each expression be evaluated?

A	$(-8)^{-\frac{1}{3}}$	Yes	No
В	$-(81)^{\frac{1}{4}}$	Yes	No
С	$\left(-\frac{1}{125}\right)^{\frac{1}{3}}$	Yes	No
D	$(-64)^{\frac{1}{4}}$	Yes	No

- 2. What is the sum of $(1.2x^5 5x^3 0.7) + (3.7x^5 + 3)$?
- 3. What is the product of $13x^3y^2$ and $6x^3y^2z$?
- 4. Multiply (3x 2)(2x + 6). What is the product?
- 5. Multiply $(2x+1)(3x^2+5x-1)$. What is the product?
- 6. Choose True or False for each statement about the polynomial $3x^2y^2 + 5xy 8$.

A	The degree is 3.	True	False
В	The polynomial is a trinomial.	True	False
С	-8 is a coefficient.	True	False
D	5 is a constant term.	True	False

7. Simplify $9m^2n - 9m^2 + 7n - 14m^2n - m^2$.

8. Subtract
$$\left(\frac{21}{2}x^2+9\right)-\left(\frac{1}{2}x^2-5x-2\right)$$
.

9. Simplify $9m^2n - 9m^2 + 7n - 14m^2n - m^2$.

Polynomial Operations

- 10. Multiply $(5t^2 13t)(t + 5)$.
- 11. Multiply $(x 4)^3$.
- 12. Multiply $(2x+1)(x^3-1)$.

13. What is the value of
$$\frac{1}{2}x^3 - x^2 + \frac{1}{5}x$$
 when $x = -\frac{2}{3}$?

14. What is the degree of the polynomial $6x^3y^2 + 7xy^4z - 4x^2y + 5$?

15. Multiply
$$(2x+3)(x^3-2x^2+x-5)$$
.

16. Multiply
$$\left(\frac{1}{2}x + \frac{3}{4}\right)^2$$
.

Quadratic Equations and Models

- 1. Solve $-5(2x-3)^2 = -45$.
- 2. Which type of function can approach zero as *x* decreases without end?
 - A linear
 - B quadratic
 - C exponential
 - D constant
- 3. Factor $x^2 + 29x + 210$.
- 4. What is the solution to $2x^2 24 = -8x$?
- 5. A rectangular field has dimensions of (2x 3) yards and (x + 4) yards. The area of the field is 285 square yards. What are the length and width of the field?

- 6. Factor $6x^3 3x^2 30x$.
- 7. Solve $x^2 + 10x = -20$.

- 8. Solve $0.1x^2 0.6x = 0.7$.
- 9. Find the zeros of $y = 4x^2 12x 16$.
- 10. Solve $-x + 3x^2 2 = 0$.
- 11. Solve $-4x^2 5x = -9$.
- 12. The function $h(t) = -16t^2 + h_0$ gives the height (in feet) of a ball dropped from a height of h_0 after *t* seconds. A ball is dropped from a height of 12 feet. After how many seconds does the ball hit the floor?